COMPARISON OF THE TRADITIONAL AND MODERN

APPROACHES TO MODELLING ACID-BASE

12

Matousek, S & Rees, SE

1)Institute of Pathological Physiology, First Faculty of Medicine, 2)Charles University in Prague, Czech Republic; Center for Modelbased Medical Decision Support, Institute for Health Science and Technology, Aalborg University, Denmark

Introduction:

The approaches to modelling acid-base chemistry can be largely divided into two groups, the 'traditional' and 'modern' approaches. The traditional approach is based mainly on the work of Siggaard- Andersen and co workers [1, 2] and divides acid-base disturbances into respiratory (changes of pCO2) and metabolic (changes of BE). It has originally been repre- sented in a form of acid base nomogram and more recently by a so called Van Slyke Equation. The modern approach is credited to the work of

Stewart and Figge and Fencl, and Constable [3, 4, 5]. It divides acid base disturbances into respiratory (changes of pCO2), metabolic (changes of Strong Ion Difference—SID) and changes in plasma protein (main non-bicarbonate buffer) concentrations (Atot) (Figure 1).

Both approaches include parameters for the quantification of unmeasured anions. These are known as strong ion gap in the case of the modern approach and anion gap or corrected anion gap in the case of traditional approach. Recently, many studies have compared the clinical

utility of parameters of either approach [6, 7]. However, when performing such comparisons it is important to compare like with like, an understanding which only comes via appreciation of the mathematics included in the approaches.

Methods:

This presentation will explain systematically the similarities and differences of the approaches. To do so, plasma is used as an example and the mathematical formulation of the two approaches explained in simple terms. A patient example will be used to illustrate the application of the two approaches, evaluating whether both approaches give same picture of the patient.

Results:

It can be shown mathematically that very little difference exists between the approaches and that the mathematics of either approach can be easily derived from theotherwithafewsimpleassumptions. For example, the van Slyke equation can be derived from Stewart's equa- tions describing non-bicarbonate buffers using only the

Reaction equations	Mathematical representa	tion Traditional approach
$H^+ + HCO_3^- \leftrightarrow H_2O + CO_2$	$[H^+][HCO_3^-] = K_{C^-} * pCO_2$	$nH = nK_{a} + \log \frac{[HCO_{3}]}{[HCO_{3}]}$
$H^+ + A^- \leftrightarrow HA$	$[H^+][A^-] = K_A * [HA]$	$\mu m = \rho m_c + \log \alpha * \rho CO_2$
	$[HA] + [A^-] = A_{tot.}$	$BE = (24.4 - [HCO_3^-]) + \beta(pH - 7.4)$
	$SID - [HCO_3^-] - [A^-] = 0$	
Fig. 1. Buffering reactions in plas- tion. All non-bicarbonate buffers (i lumped under the symbols HA/A^{2} approach are known as Henderson-i	ma and their mathematical represe albumin, globulins and phosphate) . The two equations of the traditi Hasselbalch equation for the bicarbo	nta- are onal nate

buffer and van Slyke equation for calculation of base excess (BE) K—dissociation constants; $pK = -\log_{10}K$; SID—strong ion difference α —solubility of carbon dioxide, β —buffer capacity of non-bicarbonate buffers (of the whole blood or just plasma).

assumption of constant buffer capacity. A patient example can illustrate that there is not only a theoretical equivalence, but also a numerical equivalence between certain parameters of the two approaches (e.g. corrected anion gap and strong ion gap).

Conclusion:

In conclusion, it can be shown that the approaches are largely equivalent and that quantitative links between acid-base and electrolyte status can be made with either approach, provided plasma albumin levels are measured.

REFERENCES

1. Siggaard-Andersen O: The Van Slyke Equation. Scand J Clin Lab Invest 1977, 37 (Suppl 146):15–20.

2. Siggaard-Andersen O, Fogh-Andersen N: Base excessor buffer base (strong ion difference) as a measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand 1995, 39 (Suppl. 107): 123–128.

3. Stewart PA: Modern quantitative acid–base chemistry.Can J Physiol Pharmacol 1983, 61:1444–1461.

4. Fencl V., Jabor A., Kazda A., Figge J.: Diagnosis of Metabolic Acid–Base Disturbances in Critically Ill Patients. Am J Respir Crit Care Med 2000, 162:2246–2251.

5. Constable PD.: Clinical assessment of acid–base status:comparison of the Henderson-Hasselbalch and strong ion approaches. Vet Clin Pathol 2000, 29(4): 115–128.

6. Dubin A., Menises M. M. et al.: Comparison of three different methods of evaluation of metabolic acid–base disorders. Crit Care Med, 2007, 35(5):1264–1270.

7. Honore P.M., Joannes-Boyau Olivier, Willem Boer: Strong ion gap and outcome after cardiac arrest: another nail in the coffin of traditional acid–base quan-tification. Int Care Med 2009, 35(2): 189–191.