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Introduction: Automated brain activity monitors have be- 
come increasingly used in the Anesthesia specialty. Ini- 
tially developed for preventing intra-operative 

awareness, the so-called ‘consciousness’ monitors have 
rapidly shown their ability to quantify anesthetic drug 
effect. This led to their use for patient-specific drug 

titration, and explains their   popularity  in  procedures  
involving  intravenous anesthetics, and in particular 

Total Intra-Venous Anes- 

thesia (TIVA), where the anesthesiologist does not have 

the  advantage of a MAC value to help administer the 

drugs. 

Recently, there has been a regain of interest in closed- 

loop systems that use such cortical monitors as a feedback 

quantity to precisely determine the amount of drug nee- 

ded to regulate the patient’s cortical depression. While 

closed-loop systems remain at the stage of investigational 
devices, clinical evidence suggests that they outperforms 
manual control [1] and can be used in high risk patient 

population [2, 3]. Similar technologies are being investi- 

gated for the control of sedation in the ICU [4], and for 

special situations related to mass casualties, military oper- 

ations, and humanitarian actions [5]. 

In this paper, we address the question of the suitability 

of  cortical monitors for use as  feedback sensor. In par- 
ticular, we assess the predictability of 3 monitors: the BIS 
A2000 (Aspect Medical), the MEntropy (GE HealthCare), 

and the  NeuroSENSE  NS-701  (NeuroWave  Systems). 

These monitors are all based on the acquisition of scalp 

electroencephalogram (EEG)  signal(s), obtained  non- 

invasively from the patient’s forehead. The  BIS A2000 

calculates the BIS index. The M-Entropy calculates the 

RE  (Response Entropy) index, and the  NeuroSENSE 
calculates the  WAVCNS  index  [7].  All are  bounded 
dimensionless values from 100 (‘awake’) to 0 (‘comatose’), 

and are derived using proprietary algorithms. 

The  issue of  predictability is particularly important 

when it comes to the use of a given technology as feed- 

back sensor in a closed loop scheme. Indeed, the perfor- 

mance and stability of a closed loop system heavily depend 

on  the performance of the sensor used to measure the 
effect of the drug. It is typically required that feedback 

sensors meet a number of prerequisite characteristics be- 

fore their use within a closed loop framework is consid- 

ered. For instance, a common  requirement is that the 

sensor provides a well-defined mathematical relationship 

between its output (typically a quantified value), and its 

input (i.e., the physical phenomenon being measured). 

It is also strongly recommended that the input/output 

relationship be linear and time-invariant. Non-linearities 
and  time  variant processes within  the  algorithms can 

unexpectedly result in unstable control actions, leading to 

undesirable oscillations in the controlled endpoint (e.g., 

anesthetic-induced cortical depression). These sensors are 

also difficult to mathematically model. Therefore, their 

dynamic behavior cannot be directly accounted for when 

designing the controller. Proving the mathematical sta- 
bility of the controller becomes therefore difficult when 

dealing with non-linearities and time variance, and must 

be  based on empirical observations rather than a deter- 

ministic evaluation. In a heavily regulated field, the lack of 

scientific mathematical proof regarding the robustness of a 
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closed-loop system may dramatically impede regulatory 

approvals. In addition, empirical control design typically 

requires a significantly larger cohort of patients for vali- 

dation purposes. 

Method and Results: To determine the predictability of a 

feedback sensor, we assess whether its output can be in- 

ferred (i.e., predicted) from its input using a Linear Time 

Invariant (LTI) function. To make this determination, we 
use the following two tests. 

The  first test is used for the identification of a LTI 

model  describing the  input/output   relationship of  the 

monitor, see Figure 1. 

This test is carried out  by replaying in  real-time a 

composite EEG waveform comprising of increasing and 

decreasing steps in  cortical activity. The  waveform is 

constructed based on  quasi-stationary segments of pre- 
recorded EEGs obtained  from  volunteers and  patients 
undergoing  anesthesia procedures.  A  digital-to-analog 

converter with an attenuator stage is used to replay the 

waveform.  The  input  signal in  Figure 1b  is  further 

determined based on the composite EEG and its corre- 

spondence with respect to the monitor scale. The input 

and output waveforms are then used to calculate the LTI 

model using a standard recursive least square approach. 
The goodness of fit between the model output and the 
true  output  is a measure of how  well the  model can 

predict the monitor output. 

The second test is used as validation of the model based 

on  a different composite EEG signal. The results of the 
validation test are presented in Figure 2. The  test was 

comprised of a number of stationary EEG segments ran- 
domly  distributed over  time.  The  minimum  segment 

duration  was  20  seconds  (Figure 2a).  Based on  the 
equivalent input signal, we predicted the sensor output 
using the models derived previously. We then compared 

the outputs of the monitor and the model to verify their 
agreement by calculating the goodness of fit, see Table 1. 
The goodness of fit is defined as: 
 

FIT ¼ 100  ð1     jjy    ŷjj=jjy    yjjÞ ½% ; ð1Þ 
 

where y is the true sensor output, is the predicted out- 

put,  and  is the  mean  value of  the  true  output.  FIT 

captures the percentage of the output  variations that is 

reproduced  by  the  model  (a higher  number  means a 

better model). 

While all monitors performed well on the identification 

data, the validation data shows the inappropriateness of 

the models for the BIS A2000 and the M-Entropy, which 
highlights potential non-linearities and time variance in 
their algorithmic structure. 
 
Table 1.  Goodness  of fit (in %) 

 
BISA 2000 M-Entropy  NeuroSENSE 

NS-701 
 

Test #1 

(identification) 

Test #2 

(validation) 

81.5 87.3 91.2 

 
53.2 29.2 94.8 

 

 

Discussion: Cortical monitors use complex algorithmic 

processes to determine the cortical state of the patient. 
The design of these algorithms often dictates the dynamic 
behavior of the sensor. For instance, the use of neural 

networks,  fuzzy logic, discriminant analysis, switching 
rules, etc.,  typically translates into  a  non-linear,  time 
variant process that may not be predictable. Such tech- 

nologies are referred to as ‘interpretative’  or ‘intelligent’ 
since they mimic the human cognitive process to make an 

interpretation of the signal patterns. 

Conversely,  ‘deterministic’ technologies  use  direct 

quantification of EEG patterns. The  advantage is that, 

regardless of past information, the quantification is always 

performed the same way, the output of the monitor being 
   a repeatable measurement. These technologies typically 

Fig. 1.  Identification  of a cortical monitor input/output LTI relatioship. (a) 
composite test EEG.  (b) Equivalent   sensor input,  (c) Sensor  output, 
(d) Model output. 

offer the best predictability and suitability for closed-loop, 

but they are also the most difficult to develop as they do 
not offer the flexibility of interpretative technologies. 
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The NeuroSENSE was initially designed for closing the 

loop [7] and as such uses at its core a deterministic ap- 

proach to EEG analysis. As a result, its behavior is fully 

captured using a unique LTI model that can easily be 

accounted for in a controller design. Closing the loop 

using  the  NeuroSENSE  as  sensor may  speed-up  the 

development of such systems and may ease regulatory 

approvals. 
 

 
 

REFERENCES 

 
1. Liu et al. ‘Titration of Propofol…’, Anesth., 2006. 

2. Liu et al.,’Closed-loop control of consciousness during 

lung transplantation…’, J. Cardiothorac. Vasc. Anesth., 
2008. 

3. Hegde  et  al.,’BIS index guided closed-loop anases- 

thesia…’, J. Clin. Monit. Comput., 2009. 
4. Haddad et al., ‘Closed-loop control for ICU sedation’, 

Best Pract. Res. Clin. Anaesth., 2009. 

5. Pauldine et al., ‘Closed-loop strategies…’, J. Trauma, 
2008. 

6. Zikov et al., ‘Quantifying cortical activity…’, IEEE 

Trans. Biomed. Eng., 2006. 
7. Bibian et al., ‘NeuroSENSETM Monitor…’, White 

Paper, www.neurowavesystems.com, 2008. 

 


